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Abstract 

This paper examines the behavior of flux and slope limiters on non-uniform grids 
in multiple dimensions. We note that on non-uniform grids the scalar formulation 
in standard use today sacrifices k-exactness, even for linear solutions, impacting both 
accuracy and convergence. We rewrite some well-known limiters in a n way to highlight 
their underlying symmetry, and use this to  examine both traditional and novel limiter 
formulations. A consistent method of handling stretched meshes is developed, as is 
a new directional formulation in multiple dimensions for irregular grids. Results are 
presented demonstrating improved accuracy and convergence using a combination of 
model problems and complex three-dimensional examples. 

1 Introduction 

For many finite-difference or finite-volume computations with discontinuous solutions lim- 
iters are a necessary evil. On one hand they suppress oscillations and maintain monotone 
solutions. On the other hand, they reduce accuracy and can hamper convergence to steady 
state [a]. Limiters can be difficult to extend to multidimensional unstructured grids, and 
they do not degenerate gracefully on distorted grids. Other problems can include limiter 
chatter, rattling in near-constant portions of the flow field, and additional convergence 
problems with Newton’s method for non-smooth limiters [13]. These problems can occur 
on both structured and unstructured grids, for both flux and slope-limiter formulations. 

Most of the research on limiters has been in .one space dimension: where a reliable 
thecry &sts [63: There is suhst.mtia.lly less litemtiire on extensions to two or more dimen- 
sions, where theory is lacking. On multi-dimensional structured grids, limiters are typically 
applied independently in each coordinate direction, which works well in practice. On un- 
structured grids most codes use a scalar limiter, where the gradient is reduced by the same 
scalar fraction regardless of direction [3]. There is almost no discussion on the application 
of limiters to irregular or non-uniform grids, although nearly all meshes on real geome- 
tries fall into this category (some recent exceptions however are [7, 91). The purpose of 
this paper is to develop limiters that preserve monotonicity, are exact for linear solutions 
(called k-exactness for k = l )  , and have good convergence properties on non-smooth grids. 
We illustrate their performance with examples computed on multi-level Cartesian grids with 
embedded boundaries. These grids make a good testbed, since they include large portions 
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of regular uniform grid cells, mesh interfaces with 2:l mesh stretching, as weii as generai 
irregular polyhedra at the embedded boundaries. 

In the rest of this section we briefly summarize some relevant. parts of the literature. 
Section 2 presents some problems with limiters in common use today, which may not be 
well-known. Section 3 discusses a solution to the problem of limiters on stretched meshes. 
Generalizatioas of one diixensiod limiters for multi-dimer,sior,al irregular grids are pre- 
sented in section 4. Computational results using both model problems and a variety of 3D 
test cases are presented in section 5. 

1.1 Background 

The most common framework for looking at limiters was systematized by Sweby [12], using 
the flux formulation. By analogy with Flux Corrected Transport [14], one writes a second- 
order scheme a s  a first-order scheme plus a limited anti-diffusive flux, shown here for the 
case of linear advection ut + uu, = 0 ,  as 

U?" = 'Up - x ( U i  - 7Li-1)  - ('$iFi+1/2 - '$i-IFi-1/2) 

where the flux Ft+lp = iX(1 - X ) ( U , + ~  - ui). Here the &'s are the flux limiters, and 

Define the ratio R of forward to backward differences in the solution (note that R is the 
A x .  

inverse of Sweby's r )  as 

By choosing gi = $(Ri) properly, a total-variation-diminishing (TVD) scheme can be 
achieved. Sweby the3 derives the well-known result 

This is often expressed graphically for the different possible limiters using the Sweby diagram 
of figure l(a): choosing + in the shaded region leads to a second-order TVD solution. An 
important point to note is that for second order accuracy away from extrema, the limiter 
must satisfy 

$(1) = 1. 

In other words, the method should not do any limiting when the solution is a linear 
function. AISG $ must be symmetric, 

although this symmetry may not be immediately apparent in figure l(b). Later we will 
rewrite the limiters in a more transparently symmetric form. All the limiters below satisfy 
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Figure 1: (a) Second order TVD region from 1121. (b) Common flux limiters $ from eq. 
(5). 

the symmetry relation (2). Limiters of interest, in order of increasing dissipation, are 

(super bee) gsb(R) = minmod[max(l, R), 2,2R] ( 3 )  
1 4R 4 

(Barth - Jespersen) $BJ(R) = S(R + 1) min[min(l, -), min(1, -)] (4) R + l  R + l  

R 2 + R  
(van Albada) $VA(R) = 

( 5 )  

(6) 

(minmod) gmm(R) = max{0, min(1, R)) (7) 

The superbee limiter follows the boundary of the TVD region, and is included in figure l(b) 
for reference. The superbee and Barth-Jespersen limiters are the most compressive, and 
are known to turn smooth waves into square waves. In multiple dimensions their overly 
compressive nature may lead to staircasing of discontinuities on non-aligned grids. 

Spekreijse [Ill shows the equivalence of flux limiting with slope limiting, which is more 
natural for finite volume schemes in REP form [5 ] :  Reconstruct the solution from its cell 
averages, Evolve the reconstructed solution from time t, to tn+l, and Project the solution 
back onto the grid to update the integral cell averages at the new time. We can see this by 
compuring stares in the iiux form for linear advection, usiiig ciie one-sided diEeieiie5 fioIii 
the Fromm scheme. Computing the states at the cell interfaces we get 

(8) 

(9) 

L 1 

R 1 
u,+1/2 = 212 t #(R,) (YZ - %-1) 

Y 

u,-1/2 = - S W / R % )  (%+1 - u z )  

where u$1/3 is the left state at  the right edge, etc. By requiring that this be equivalent to  
limiting a single reconstructed gradient at cell i, here the central difference (u2+1 -uz-1)/2h, 
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Slope Limiters 
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Figure 2: Common limiters in slope form from eq. (14) 

Thus abng with using eq. (2), we get the relationship betweer? a flux limiter 7 )  and a slope 
limiter 

R f l  
2 $(R) = 4(R)(-). 

Whereas flux limiters satisfy 0 5 $(R) _< 2,  a slope limiter satisfies 0 5 4(R) 5 1. Slope 
limiters make the reconstruction step easy, by writing the reconstructed function U, (x) in 
cell i as UZ(x) = u, + +(R,)Vu,(z - x,), where u, is the cell average. Note that for any 
limiter $ satisfying eq. ( 2 ) ,  4 satisfies the slope form of the symmetry condition 

(12) 
1 

#?) = +q. 
Figure 2 shows the behavior of the same collection of limiters as figure 1 but this time 

in their slope form. The common limiters in slope form are: 

~ B J ( R )  = max(0, min(2R, l j ,  min(R, 2 ) )  (13) 

(14) 4VL(R) = 

(15) 4V.4(R) = - 

(16) 

4R 
( R  + 1)2 

2R 
R2 + 1 

2R 2 
dmm(R) = max{O,min(- l + R ' l + R  -I} 
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1.2 Symmetric View of Limiters 

While slope limiters of the form in figure 2 are helpful, we briefly digress to p,reserit a 1m.m 

intuitive way to graph the slope limiters. In figure 3 the independent variable f is the 
fraction u, - uZp1 of the u-hole jump uZL1 - u,-1. This form has the added benefit that we 
c m  :mre easily see the beh2vior of the limiter fer larue 0 R. 

Let the undivided differences A- = u, - u,-l, and A+ = uZI1 - u,, so that A, = 
u,+1 - u,-1 = A+ + A_. The fraction f = A-/A, gives a symmetric view of the slope 
limiters as f ranges from 0 to 1. The symmetry is more apparent since the limiter can be 
plotted as a function of A- or A+, and the function is symmetric about f = 1/2.  It also 
becomes obvious that it is the neighbor of u, with the larger jump, either u,+1 or u,-1 that 
causes the limiting of uz’s slope, since it is thzs jump that would cause the overshoot at the 
other neighbor’s face. In these variables the common limiters become 

7rn- 

A, 
4 . = sin(-) san 

3 Slope Limiters in Symmetric Form 
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Figure 3: (a) Symmetric form of slope limiters. (b) Cell averages corresponding to the 
limiters. When ui is exactly in the middle, the data is linear, f = .5, and the limiter is 1. 

This symmetric form also makes it easy to devise new limiters. For example, inciuded 
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in figure 3(a) is a new sin limiter, defined by 

) = cos(7r) sin( ___ -7i 1 7 i L  T ( &  - A+) 
AC 0, & 

$sin(R) = sin(-) = sin( 

L l C  

This limiter is continuously differentiable, does not limit linear data, satisfies the symmetry 
property (12), and falls between the van Leer and van Albada limiters in terms of dissipation. 

1.3 Multi-dimensional Formulations 

On structured grids in two space dimensions Spekreijse limits each coordinate direction 
separately and the scheme preserves monotonicity at steady state. However Saltzman [lo] 
shows that for the second-order time-accurate MUSCL scheme in two dimensions, a larger 
neighborhood of values, illustrated in two dimensions in figure 4, needs to  be included 
in the limiter for strict monotonicity of the time-dependent solution. He defines the new 
Benjamin limiter by extending Barth-Jespersen (also called the limited monotonicized cen- 
tral differences) to include corner coupling. A one-dimensional geometric interpretation of 
Barth-Jespersen is that the central difference cannot exceed twice the forward or backward 
differences at that cell. (From this it follows that the reconstructed value at the face does 
not exceed the neighbor’s cell-centered value). In two dimensions, the central difference 
must also be checked against the forward and backward differences of neighboring rows and 
columns to ensure there are no new maxima at the next time step. In Saltzman’s notation, 
but simplified here by assuming all gradients are positive, the limited gradient in the 5 

direction can be written 

Similarly, the limited y gradient is either the central difference in the j direction, or the 
minimum of twice the forward or backward difference in any neighboring column in that 
direction. This limiter has been found to be overly diffusive for many applications, but we 
will use elements reminiscent of it later in devising a limiter for cut cells. 

Although limiters can be too dissipative they can also be too compressive, a wdl-ho-i~n 
pro’uiein r‘or e~a,~;rnpie w i i l i  ilit: supel bee Gi- Eaith-Jaspaiseii liiiiiteis. Iii PFX, t l i ~  Eligki 
order reconstruction scheme of [4], this was handled by explicitly adding second difference 
dissipation at strong shocks in both the normal and the tangential direction. However 
one of our goals in section 4 will be to devise a more dissipative limiter to automatically 
accomplish this 011 irregu!ar grids. 

2 Problems with Limiters 

Despite the simple framework sketched in the previous section, the fact remains that the 
most common situations found in practice are more complex. Little work appears in the 
literature on applying limiters to irregular meshes in one or more dimensions. This includes 
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Figure 4: Stencil for the Benjamin limiter of eq. (18) for two-dimensional time-dependent 
problems. The gradient computed at i, j is compared with the forward differences (in green) 
and the backward differences (in purple) for the limiting in the x direction (a), and similarly 
for the y direction (b). 

their application on unstructured meshes, although these grids are now nearly as common 
as  their structured counterparts. In this section we illustrate some problems with limiters 
that are either not well known or ignored since practical solutions are not available. 

2.1 Stretched Meshes 

W-hen the grid is unstructured or irregular, a common procedure to approximate the gradient 
&t c& i is to use a Iez t  sqiix-es lit to the solution iil neighboriiig cdIs [ 3 ] .  In general this 
gives a first-order accurate approximation, and for linear data it is exact, even on distorted 
meshes. However the limiting procedure can destroy this property. 

We illustrate this in one-dimension using three unequally spaced adjacent grid cells. The 
least squares gradient approximation at cell i is 

where h+ = zi+l - zi, h- = xi - zi-1, D+ui = (ui+l - ui)/h+, etc. Note that the 
least squares gradient in eqn. (19) is a convex combination of the forward and backward 
differences computed on the irregular mesh. If the mesh is uniform, h+ = h-, the weights 
become 1/2  each, and we recover the familiar second-order first derivative stencil 

On a non-uniform mesh a second order accurate gradient approximation is of course possible, 
but it does not minimize the least squares error of the linear fit. The second order non- 
uniform approximation is a linear combination with different weights, Vuz = =D+uz + 

Consider the one dimensional stretched mesh of figure 5, where the cell size of u, is h. 
In the left figure the mesh is locally irregular, and the cell size of uz+l is h/2 In the figure 
on the right: the mesh has a constant stretching ratio of 2. If eq. (1) is applied to linear 
data with slope s ,  

h i  

h- - 
u - U , .  h++h- 

U , i l  - 21% - s .  (5 ,+1 - zz) - 3/4h 3 - - - 
4 '  

R= 
U ,  - ~ ~ - 1  (x% - ~ 2 - 1 )  h 

7 



Figure 5: The left mesh has a mesh refinement interface; the mesh on the right has a 
constant stretching ratio. The ratio of the difference R = - is 3/4 in (a) or 1 /2  in 
(b). For linear data a ratio of 1.0 is expected by the uncorrected slope or flux limiter forms 
in eq. (14) or (5). 

where the cell average value u, is taken to be located at the cell center 5,. On a uniform 
grid this ratio would be 1 but on a stretched mesh it isn't, so most of the limiters (except 
Barth-Jespersen or superbee) will be activated. For example, the van Leer limiter of (14) 
gives a limiter value of 6/7 when R = 3/4. For the grid in figure 5(b) R=1/2, and the limiter 
value will be 2/3. The Barth-Jespersen limiter, which has the geometric interpretation that 
the reconstruction at the ceii edge should not exceed tlie cell centered  due of the adjacefit 
cell does not require limiting on stretched meshes for any stretching ratio. 

Figure 6: In a11 three examples, Iinear data is not preserved by standard limiters. Let the 
line between cell centers A and B also be the level lines of the solution. The flux evaluation 
and solution limiting occurs at point C, which is not on the line. Point C will have an 
overshoot, and the eziict gradient which was reccnstructed at A and B will be limited. 

This limiting of linear solutions occurs often in higher dimensions, and is responsible for 
some loss of accuracy. The limiting is occurring iiot because of extrema or discmtinuities, 
but simply because of the mesh stretching. Figure 6 shows three situations where this can 
occur. In each case, let the linear data be such that points A and B are equal. Point C will 
then'be an extremum when compared to the cell averages, and the gradients at both A and 
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B Lviii be iimired. This happens regardless of which iirriiter is used, sirice all iimiters will 
see C as a new extremum. On smoothly varying triangular grids where the median dual 
is approximated with the centroidal dual, the midpoint of the edge is only O(h')  from the 
point on the line bemeen the two neighbors, so this is not likely to be noticeable. On the 
other hand, the use of scalar limiters in multiple dimensions will exacerbate this problem. 

2.2 Face-based Limiters 

One idea that has been previously suggested to reduce the dissipation from limiters is to 
apply them on a face-by-face basis. If one neighbor causes an adjacent cell to limit its 
gradient, the limiter would only be applied on its common face - that is, on one side of the 
reconstruction. The neighbor on the other side might allow some or all of the gradient to be 
used on the face it shares with the same cell. This can be thought of as a generalization of the 
geometric interpretation of the Barth-Jespersen limiter. Note that this limiting procedure 
does not preserve the mean of the reconstruction. Face-based limiting was shown not to 
work well in practice in [2]. Here we explain this by showing that this approach does not 
preserve monotonicity. 

Figure 7: Initial piecewise constant solution for counter-example showing that face-based 
limiting does not preserve monotonicity. All gradients are zero except at cell i. 

Let u be a step function as shown in figure 7. For linear advection, ut + u, = 0, the 
update at cell i using a spatially second order upwind differencing (so the upwind state is 
on the left) and face-based limiting gives 

where d~ is the value of the limiter on the right face of cell i. Let uz, be the central 
difference for cell i, uz, = . Note that the forward difference D+uz = ___ h < u'b 

is larger than this, so the reconstruction at the right edge will not exceed the value u,+1 
and will not need to be limited using Barth-Jespersen. Hence d~ = 1, so 

%+1 -ut- 1 &+l-% 
2h 
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In other words, there will be an undershoot at zli at the next time step. As chis exampie 
shows, the face with the largest change in the solution is responsible for limiting at the 
other face. This does not occur with face-based limiting, but occurs naturally for symmetric 
limiters satisfying eq. (12). 

2.3 

Most finite volume implementations on unstructured grids use a scalar form of the limiter 

Direct ional  Limiting and Gradient Rotation 

here is a scalar slope limiter in cell z and 7’ is the position vector from the cell centroid 
to the face. This extension of (10) to multiple dimensions is in contrast to the traditional 
structured grid implementations which limit the gradients independently in each coordinate 
direction. Thus, if the data is linear in one coordinate direction, the gradient will not be 
reduced regardless of limiter activity in the other directions. By contrast, the scalar limiter, 
while popular, is far more severe since limiting triggered by any face of a polyhedral cell 
degrades the gradient in all directions. Results in [a] show that even for smooth flows, the 
scalar implementation is dramatically more dissipative than the directional form. 

While directional limiting is straightforward on cells with orthogonal faces, it turns out 
to be somewhat more subtle on more general meshes. The underlying difficulty stems from 
competing requirements of a face-by-face implementation that still guarantees positivity. 
Figure 8 illustrates the situation for both cell types. The frames on the left of figure Sa) 
trace the evolution of the gradient on a Cartesian cell, while the frames on the right examine 
the process for a cell with non-orthogonal faces (in this case simply a triangle). 

Following the evolution on the orthogonal cell in 8(a), frame s(a.1) shows the monotonic- 
ity boundary imposed by face1 . The directionai implementation removes the component 
of Vu normal to this face (shown in red) resulting in the modified gradient Vu’. In frame 
8(a.2), the gradient is further reduced by removal of the component of Vu’ that extends 
beyond the monotonicity boundary established by face2.  In reviewing this process, notice 
that since faces 1 and 2 are orthogonal, the limiting in frame 8.a.2 retards the gradient while 
still respecting the limit boundary from face1 . The limited gradient, qb Vu resulting from 
this face-based implementation sits on the perimeter of the monotonicity region (shaded) 
in figure 8(a.2). 

By contrast, examine the result of this process on the general polyhedral cell on the 
right of figure 8. In frame 8(b.l) face1 limits Vu to Vu’ by again removing the component 
normal to the monotonicity boundary. In frame S(b.2) we impose the corresponding limit 
from face2.  This time, however, removal of the face normal component of the gradient 
produces a limited gradient C#J Vu which violates the earlier boundary established by face1 , 
and the final limited gradient unfortunately lies outside the monotonicity region for the cell. 

The reduction in dissipation and improved reconstruction properties offered by direc- 
tional limiting [2] gives strong motivation to successfully implement them on general polyg- 
onal meshes. However, as the sketches in figure 8 demonstrate, this implementation is 
delicate. In essence, each r?ew face miwt respect the boundary of the monotonicity region 
established by all other faces. This poses an implicit problem for the limiter values. For 
each cell gradient, we seek the point on the boundary of the monotonicity region which 
preserves as much of the unlimited gradient as possible. This problem can be formulated 

. 

+ 

-+ 
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Figure 8: Illustration of the limiting process on a cell with orthogonal (a) and non- 
orthogonal (b) faces. After limiting against two faces, the resulting region shaded in yellow 
shows the allowable inoiioioniciiji region for the gradient. The limited gradient must fall 
within in the yellow region. 
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as a clipping operation, or as an implicit system of equations. Either of these cases requires 
a n  additional s w e ~ p  over the cell faces to determine the limiter value which simultaneously 
respects the monotonicity boundaries imposed by all faces of general polyhedral cells. On 
cells with perpendicular faces, this system decouples and orthogonality ensures that limiting 
of one face will not result in an overshoot of a boundary that has already been imposed. 

3 Limiters on Stretched Meshes 

It is straightforward to rewrite the limiters to preserve linear solutions on stretched meshes. 
We use scaled differences, or gradients, that incorporate the mesh stretching in the limiter 
definitions instead of using undivided differences. In other words, replace A+ -+ D;, A- -+ 

D- and A, -+ .5Dc. For the van Leer limiter for an increasing solution (IRI = R > 0) on a 
uniform mesh for example, we get 

Using this form on a stretched mesh with linear data will preserve the linearly-exact gradient 
reconstruction, since D+, D- and Dc will all be equal to the exact slope, and no limiting 
will take place. 

Re-writing of the common limiters to reflect the mesh stretching gives 

7TD- 
DC 

- 2D+D- 

q5 . = sin(-) san  

- 
dVA D:+DE 

On a regular mesh, where D+ + D- = 2 Dc: eq. (25) is of the form 

which is easiiy seen to give 4 5 i for aii a, b. On a stretched mesh the central difference is 
repiaced by the ieast squares difference (however we stiii use the notation Ecj, so E, is not 
the sum of the forward and backward differences, and eq. (25) does not lie between 0 and 
1. One more step is needed to turn this into a limiter. The function is brought back into 
the form (30) by writing 

Eq. (31) computes an estimate of the limiter from both sides of the cell, and takes the 
minimum. A geometric interpretation of this is that each face computes the limiters for its 
adjacent cells assuming the cell it doesn't see (on the other side of the other face) is the 
same size as it is. The min is needed in case this isn't true - one face will compute a more 

12 



stringent limiter vaiue than the other side. In fact, the side with the greater change in the 
solution will cause the limiter to fire at the ocher side of the cell. 

Eq. (31) is more complicated than simply defining R’ = Dl /D-  and using the same 
limiter definitions. That is because in an edge-based unstructured code, this is actually 
t,he way the limiter is implemented, since information from two cells away is not readily 
avaiiabie. Aiternativeiy one can try to adjust the weights in the least squares formulation 
so that even on a stretched mesh eq. (20) holds. However, this looked unlikely to extend 
to more than one dimension and was not pursued further. 

4 Multidimensional Limiting 

Several approaches to non-directionally aligned limiting in multiple dimensions have been 
proposed. Recently, some researchers have used a weighted least squares to limit the gra- 
dient, or even construct it initially. In [8] data-dependent least squares is considered, with 
weights chosen geometrically based on the distance between neighboring cells. Rider and 
Kothe [9] have suggested incorporating monotonicity constraints into the least squares gra- 
dient procedure itself. Their algorithm first computes the least squares gradient, then makes 
a second pass where only neighboring data with directional derivative smaller than the least 
squares gradient in that direction is used. This can be considered a generalization of the 
mzn limiter. They show that a very close approximation to this is obtained by solving a 
weighted least squares problem where the weights are inversely proportional to the change 
in the solution “uk - uo at each data point. Our very limited experience with this seems to 
indicate it works well but is prohibitively expensive, since a new least squares problem has 
to be solved for every state variable in every direction at every iteration. 

In these next subsections we present two simpler, and rather different approaches to 
multi-dimensional limiting. They have different implementation costs and benefits, so we 
present them both (and use them both in the flow solver in the examples of Section 5). 

4.1 Aligning the Data 

When the data is not coordinate aligned, one strategy is to make it so by creating a new 
uzrti~al cell center. This virtual point should be aligned along the single coordinate direction 
in which the limiting should be performed. Essentially, we re-center the data to place it 
on the normal through the face centroid where the f l u  evaluation is performed. Note 
however that, the re-centering procedure itself uses a different component of the gradient. 
This becomes one large implicit system of equations. 

To give an example in two dimensions (see figure sa), suppose we re-center the data in y 
at point A, to limit against the 2 face using point B on the other side. Let the face centroid 
values be denoted by a subscript m. This gives a recentered value at the virtual point A’: 
uy = u, + (ym - yz)q5yuy. The point at  the interface is then 

and (p3: is determined based only on the z gradient. 
In reality this implicit system is too expensive to solve, and we approximate it instead 

using only a single iteration. This means the re-centering will use a possibly not yet limited 
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component of the gradient: which is not robust. In practise for robustness we follow’the lio- 
iter determination with a test for posit,ivit.y. However ~ at, most. mesh refinement interfaces: 
only one side will need re-centering. By re-centering after the other faces where there is no 
mesh refinement have already been used for limiting, this use of partially-limited gradients 
has proven safe. 

The cut celis in a Cartesian scheme may be extremely irregular, as illustrated in 9(b). 
For these cells, the re-centering is not a safe procedure. The gradient may not have been 
limited at all, so using it for re-centering in one direction to limit in another may produce 
unphysical results. For these more irregular cases we have developed the fully general 
procedure in the next subsection. 

Figure 9: (a) Illustration of re-centering on cut cells. (b) The data at a refinement interface 
is re-centered from A to A’ before applying the limiter to prevent this. 

4.2 Multi-Dimensional Limiting for Irregular Grids 

In one dimension for R > 0 recall that the van Leer limiter 

4 - - 4 - - 4R 
W L  = ( 1 + R ) 3  2 + & t R  2+E+S‘ (33) 

On linear data, the ratio of the differences in (33) is 1, and the limiter is 1. When the 
so:iition is accelerating GT decelerating, one of the raties R 3: ? /E l  will be greater than 1 

our strategy is to replace the ratio of neighboring one-sided differences with the ratio of 
reconstructed least squares gradients in each coordinate direction. In addition, instead of 
the one-dimensional situation where there is one neighbor on the right and one on the 
left, we examine all face neighbors (reminiscent of the Benjamin limiter). The limiter 4 in 
direction k for cell 0 is 

aiid tlie limit?? -=ill stzrt t o  rz tzrz  the graX~l~. I% I” b*”U**U svfn-rl +h;e ”IAILI  tc I I * u . L Y ’ y * v  m,,lt;nla rl;manc,clnc uA,,,”,*-:,,& 

where k ranges over the coordinate directions x, y, z ,  and j is the index of a neighboring cell. 
Note that the use of the reconstructed gradient has expanded the stencil of the limiter. This 
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formuiation presen es indeperident h i  Ling in each coordinate direction; Q ~ C  is dexerminea 
using the gradients in the kth direction only. We can limit u, without affecting uy. For a 
linear function, the gradients in all cell are equal, the d3's sum to 2 .  of nezghbors (since 
the gradient ratio and its inverse are both coilnted), the denominator will sum to 4, and the 
limiter will be 1. Thus eq. (34) retains the property that linear solutions are not limited, 
and shuzs =E s m m ~ h l y  as d - 0 or d - x. 

Unfortunately in one space dimension the generalization (34) becomes 

and it is easy to show that this limiter is not always in the TVD region. One more modifica- 
tion is necessary, which we motivate by looking at the behavior of ( 3 5 )  in two specific cases. 
Since (35) involves a five-point stencil it is hard to compare graphically with the limiters in 
figure 2. Instead we look at two limiting cases: in figure lO(a) the solution extends linearly 
outside of ui-1, ui and ui+l, and in figure 10(b) it is piecewise constant. 

I1 R 
I 

i+l 

1 
Y+2 U .  

1-2 ui-l 'i 

Figure 10: Examples using the 5 point stencil limiter in (34). The blue lines are the central 
difference slopes in each cell before limiting. In (a) the exact solution is linear outside the 
middle 3 cells, i.e. it is extended linearly to the right using ui and ui+l and to the left using 
ui and ui-1; in (b) the additional cells 24-2 and ui+2 are piecewise constant extensions. 
The usual van Leer limiter would not limit in case (b) for a value of ui in the middle of the 
jump. 

Let the jump ui+l -u,-~ = J ,  and take u, to be a fraction of the jump so that u, -21i-1 = 
f J ,  0 5 f 5 1. For simplicity assume a uniform grid with mesh width h = 1. We then 
have for the forward, backward and central differences 
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For this case, x e  compute both the new limiter value and the standard van Leer limiter 
va!ues to get 

(37) 

For f = .5, when ui is exactly in the middle, both limiters are one, but for 0 < f < 1, 
&,, > &L. In fact, a short calculation shows that there is a range of values for f for 
which (36) is outside the TVD region. 

Comparing (36) and (37) suggests that we tweak the coefficients in (35), (the numbers 
4,2, 1/2), to find a TVD alternative. For example several alternate possibilities in one 
dimension to the van Leer limiter are 

J 

#nbors 

The formulation we recommend comes from looking at a second limiting case, when 
the soiutiori is piecewise constant oiitside of the iegiiin of k t e r e s t ,  shown ir, figurc IO@). 
Substituting for all the gradients and again comparing the new and usual van Leer limiter 
values in eq. (35) and (14) yields 

4 
f d V L  = 

2+y+- 

Again both limiters shut off when f = 0 or 1, when the intermediate value for ui makes a 
sharp discontinuity. For f = .5, ~ V L  = 1, since it sees only a three point linear solution, 
but eq. (35) gives = 4/4.5, so the steeper gradient in the middle is reduced. But again 
eq. (35) is not always in the TVD region. Looking further at (41) we rewrite 

4 - 4 - 4 
- 1  1 - 6 V L = 2 + L ; f + L  2 + L - 1 + - - 1  1 7 + 1 - f  

1-f f 

This suggests the final form we use in multi-dimensional calculations, which is 

hterestiiigly, if (42) is returzed to m e  dimensicn and d is replaced by El, it is the vaE 
Albada limiter. The fine-tuning of coefficients give a range of limiters lying between van 
Leer and van Albada in terms of dissipation. In figure 11, all the variations of the van Leer 
variation are plotted in their symmetric form. 
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-42 experiments in sectiori 5 use ey. (42) for iiie general poiyiiedral cells: and take t h e  
sum over all face neighbors in all directions. ,4 less dissipative multi-dimensional imple- 
mentation could consider using only neighbors in the j t l i  direction instead of ail neighbors 
when limiting the slope in the j t h  direction. Alternatively, this same idea of looking a t  
ratios of reconstructed gradients could be investigated for a different limiter, but we did not 
iwzstiga~e this h i h e r .  

"0 0.2 0.4 0.6 0.8 1 
f 

Figure 11: Variations on the van Leer slope limiter using the modified coefficients of eq. 
(381, (391, a d  eq. (42), which is the same cis vm Alba& ::.hen d is rephce:! by A! in zne 
space dimension. 

5 Computational Results 

In this section we demonstrate the performance of the new limiters in several test cases. We 
solve the Euler equations for compressible inviscid flow using the flow solver from Cart3D 
[l]. This approach uses multi-level Cartesian meshes with embedded boundaries, so cells 
of all types of irregularities are encounted during the solution process. At the regular cells 
over most of flow domain, the limiter is applied in the usual way, using whichever limiter 
is specified. At mesh interfaces we use the re-centering eq. (34) with the specified limiter. 
The new multi-dimensional formulation of eq. (42) is used at the cut cells, regardless of 
which limiter is used elsewhere. 

Since we expect all limiters to fire when there is a discontinuity in the solution, we 
instead examine their behavior on a smooth flow in three dimensions. We compute flow 
over an OneraM6 wing, with a free stream Mach number of .54 and angle of attack 3.06. 
This example doesn't need limiters to converge if started from a coarser solution using the 
full multi-grid algorithm. This makes the comparison between a scalar limiter and the new 
limiter formulation in figure 12 more evident. The first four grid levels in this full multigrid 
scheme do not iise gradients or limiters, s3 the behavior of the residud is identical. The 
gradients and limiters are activated when the last level is reached. The new limiter and 
no limiter runs have essentially identical convergence behavior in figure 12. The scalar 
limiter by constrast seems to hang after only an order of magnitude in convergence. These 
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experiments used a V- cycle with one pre-sweep. and a five stage Rucge-kutta method where 
gradients were evaluated only at the first stage. 

0 50 100 150 200 o.Ooo1 

## MG Cycles 

Figure 12: Convergence rates for subsonic OneraM6 wing example. 

Figure 13 shows the same convergence histories using the new formulation with the five 
different limiters of figure 3 .  The respective limiters are applied over the flow domain and 
at mesh interfaces using eq. (32). At cut cells next to the wing only the new van Leer 
formulation eq. (42) is used. Not surprisingly, the more dissipatiye the limiter the better 
the convergence. Barth- Jespersen, as before, has the most problems with convergence. Note 
however that this formulation is much improved over the version of figure 12, which is scalar 
at the cut cells and not linearity preserving at the mesh interfaces. I t  makes a surprisingly 
large difference, even though those two categories of cells are only a small fraction of the 
mesh. 

Although it is hard to say what the “exact” answer is, we expect the unlimited results to 
be the best on this mesh, and the answers to deteriorate with increasing dissipation. More 
evidence in this direction is seen by looking at the computed drag, which should converge 
to zero for this subsonic case. Table 1 gives the drag in order of increasing dissipation. All 
the iimiters shouid converge as the grid is refined, bur; for a given grid, tile less d i A p t i V e  
limiter gives the better drag count. This was computed on a rather coarse grid of 202K 
cells, to make the results more obvious. 

The last example shows the performance of the new limiter on a problem with extremely 
complicated geometry and physics. The geometry is rather coarsely resolved, with only 
1.8M cells in this calculation. The freestream Mach number is 18.5, with angle of attack 15 
degrees. The density and pressure in the OMS pods and engine bells gets as low as 
The pressure on the orbiter’s nose is nearly 450 times that in the freestream, a range of 
nearly eight orders of magnitude. Exactly the same limiter settings with no ‘special tweaking 
are used for this case, despite the deep concavities, shown in figure 14(a). Figure 15 shows 
the convergence history of the residual and the forces for this case. This example used a 

* 
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Figure 13: Convergence rates for subsonic OneraNIG wing example. 

Limiter Type 
No limiter 
BJ limiter 
VL limiter 
Sin limiter 
VA limiter 

Min limiter 

Computed Drag 
1.568e-03 
2.230e-03 
2.797e-63 
2.949e-03 
3.335e-03 
4.669e-03 

3 levels of a multigrid W cycle, with both a pre-sweep and post-sweep. Gradients were 
evaluated at every stage of the Runge-Kutta scheme. 

6 Conclusions 

We have reviewed and analyzed common forms of gradient limiters: highlighting their short- 
comings for practical application. This examination revealed the failure of traditional irn- 
plementations to preserve linear solutions in the presence of mesh stretching or other ir- 
regularities, and a lack of a clear extension t o  multiple dimensions. From this analysis a 
new formulation was developed which preserves linearity in the general multi-dimensional 
case while maintainir,g the snoothness properties of the original limiter. The performame 
of the new limiter was demonstrated in three dimensional applications using a Cartesian 
embedded-boundary method. These examples illustrate the improved convergence and ac- 
curacy properties relative to traditional formulations, as well as the robustness of the new 
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Figure 14: Orbiter calculation using 1.8M cell mesh: Mach 18.5 at 15 degrees angle of 
attack. The contours show the log of pressure. The left figure also shows some streamlines 
of the flow in black. Both the complex geometry and complicated physics of the flow field 
are apparent. 

- L1 Residual 

o .3k  
- X ForcelMoment 

! \  - Y ForcelMoment 
i '> - 2 ForcelMoment - 

t 
1 I I 

0 100 200 
-0.1 L 

## MG Cycles 

Figure 15: Convergence rate of L1 residual for orbiter calculation. Also shown are the 
computed forces at each iteration. 
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fUi 111. 

While this work has focussed on linearity preserving limiters. a rich area for future work 
is limiting for higher order methods. This is especially true in multiple spatial dimensions 
where the savings from higher order schemes are particularly attractive. 
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This work is an extended abstract tG be submitted to the 43nd Aerospace sciences meef- 
ing and exhibit session on applied CFD. The conference will be in Reno NV Jan 6-1 1, 
2005. 
This paper examines the behavior of flux and slope limiters on non-uniform grids in 
multiple dimensions. We note that on non-uniform grids the standard scalar formulation 
in practical use today sacrifices k-exacctness even for linear solutions, impacting both 
accuracy and convergence. We rewrite some well-known limiters in a new way to high- 
light their underlying symmetry, and use this to examine both traditional and new lim- 

shoiii results dennonstizting impioved acmracy and cocveigence using a combination of 
model problems and complex three-dimensional examples. 
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